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Two possible fommhions of the problem of the motion of an inhomogeneous fluid with a 

free boundary are examined. In formulation A, distributions of density and of the horizontal 

component of the velocity vector are given as piecewise smooth functions of the ordinate 

for a certain cross section of the flow. In formulation B the distribution of the density and 

of the average vorticity are given along streamlines. Problems A and B are reduced to cert- 

ain functional equations and these equations are investigated for values of the parameter 

which are close to the critical values. 

1. FotmaIatIon of problems A amI B. The two-dimensional stationary flow of an ideal 

incompressible inhomogeneous fluid above a rectilinear bed is examined. The upper bound- 

ary of the fluid is free and n interfaces exist on which the density and tangential compon- 

ent of the velocity vector suffer discontinnities of the first kind. The y-axis is taken ver- 

tically upwarda, and the x-axis along the bed of the channel. The lines of separation are 

not known and must be determined in solving the problem. Let v be the velocity vector, 

p the hydrodynamic pressure, p the density, g the acceleration due to gravity, and 

a=vv/p, Th en in each of the regions 

Tk (-- O” < 5 < -i- O”, yk-, (d < ?/ < yk b)) 
the equations of motion with nondimensional variables can be written in the form [l] 

diva =O, aevp =O, (av) a = - vpy’ -. vp (Y = 69 I4 (1.11 

The characteristic velocity and characteristic depth for different problems are selected 

in different ways. If we assume that in the transition through interfaces the pressure must 

change continuously, then the boundary conditions can be written in the form 

uy (z, 0) = 0; a-n = 0, [plk = 0 for y=yk(x) (k=l,. - ., n) (1.2) 

510 
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where n is the external normal and 

[PI, = p (5, Y, - 0)~ [plk = p (z, Yk -0)-p((z,yk+o) (k=f,...,n-1) 

Since the fluid is swirling and inhomogeneous it is necessary to assign the distribu- 

tion of density and vorticity in some way. Prior to presenting possible formulations here, 

some general properties of the system of equations (1.1) and (1.2) are investigated. The 

first of the equations (1.1) enables a stream function to be introduced for the vector a 

ax = all,/ay, a, = - d$/dx 

By virtue of the boundary conditions (1.2) the bed and the free boundary must re- 

present streamlines. Since in each of the regions Tk, the function $J (2, y) is known with 

an accuracy to within an arbitrary constant, these arbitrary constants can be selected such 

that the function I/I (x, y) will be continuous in the region occupied by the fluid. The pro- 

perties of the family of streamlines are expressed by the following theorem. 

Theorem 1.1. If the functions Y,(x) are continuously differentiable, if vector function 

a (z, y) is continuously differentiable in regions Tk and suffers discontinuities of the first 

kind in a transition across interfaces, and if the following inequalities are satisfied 

0 <A, < ax b, Y) < A,, max {I ay I7 I vu, It I vu, I> < A3 

then the streamlines cannot be closed, they cannot originate or terminate on lines of se- 

paration, and the equation for the family of streamlines can be solved with respect to y. 

Proof of theorem 1.1 is omitted since it is a trivial consequence of the theorem of exist- 

ence and the uniqueness of the solution of the Cauchy problem for an ordinary difJerentia1 

equation of a streamline dx / a, (x, y) = dy / av (2, y). 

It is not difficult to show that elements located on one streamline have the following 

constant density and total energy [2] 

p (5, Y) = R (9, l/,az+p+vR($)y=h(+l) (1.3) 

and the function $J (x, y) must be a solution of the equation 

A$ + VP (9) Y = h’ (9) (1.4) 

Here R (I# and h ($1 are arbitrary functions. Let us assume that the units of measure- 

ment are selected in such a way that the flux corresponding to the vector a through the 

cross section of the channel is equal to one. If the pressure is eliminated from the bound- 

ary conditions (1.2) by means of equations (1.3). then these boundary conditions can be 

written in the form (Pk are unknown quantities) : 

‘$ (2, yk b)) = pk, Y,EO, 0 =Po<P,<P,<...<P,=l 

[l/z(~‘#)a + vR (‘i’,) Y - h (g)lk = 0 

(1.5) 
(k=i, . . . , n) 



Equations (1.4) and (1.5) contain two arbitrary functions h (1.i) dn~l &’ (6) rilli/ n - 1 

arbitrary quantities p,, . . ., I’.,_,. F’or d f’ ‘t’ e lnl Ion of the prohlerl it is nec‘r\s,irx to :ivr, 

additional physical conditions which characterize the density and vorticitv ,listrihutioll. 

In formulation .4 the ordinates of the interfaces and also the distribution of thr ~if’n%- 

ity and of the horizontal component of the velocity vector arc ,g’ven on the channel crohh 

section z = 0, which is the axis of symmetry. Then the ordinate .‘l of the free r)oundary, the 

average density pa, and the flux P of tht= vector a through a given cross secticln can IIP rie- 

termined. We take the quantity H as a characteristic dimension, and the xluantit\ 

C’ = I’i’i& , as a characteristic velocity which can also t,t o.~lled the velocity of 

wave oropagation. Then the flux of the vector a will be equal to unity in Il(~n~ii~!lrnsi,)oal 

variables. The ordinates of the interfaces and the distribution of the density dn~l of thr 

horizontal component of the velocity vector are given in the fort)) 

1’k (0) = I/,,, //0 -_ 0 c.1: //, i . . I II,, c_ 1 (ii = 1, . , II) 

1’ w, 1/J = PO (I/), (I., (0, 2/) r- 4 (1/J 
(1.6) 

Here h,, . . ., h,_l are known quantities while b(y) and q(y) are known piecewise 

functions having discontinuities of the first kind at points h,, . . ., h,_, satisfying the 

following conditions 

Bounds on the functions p,,(y) are quite natural from a physical point of view. They 

indicate that the heavy layers of liquid are located lower than the lighter ones. The bounds 

on the function 9(y) are more restrictive and must provide that the conditions of theorem 1.1 

are satisfied. Let E,,, denote the set of pairs of the functions [PO (Y), q (Y)], which have 

discontinuities of the first kind at the points h,, . . ., /L~_~, which are twice continu- 

ously differentiable at hk_l < q < hk and which satisfy conditions (1.7). 

It will be shown that the independent function R (& can be determined. For this, 

conditions (1.6) are rewritten in the form 

R [II, (0, Y)I = PO (Y), (W / @/)x=-o = 4 (Y) (1.8) 

Integrating the second condition (1.8) we obtain that the function 

cp (Y) = I# (0, Y) = [ 4 (t) dt 
0 

will be monotonic and continuous and it therefore has a continuous and monotonic inverse 

function y = 7 (@,, where q (0) = 0, q (P,) = hk. Substituting the quantity y = 7 ($) 

into the right-hand side of the first of equations (1.8). we obtain that R (q) L p. [q (q)], 

and consequently the function R(ti) is determined. 

Assuming that the conditions of theorem 1.1 are satisfied, a change of variables is 

made in equation (1.4) and the boundary conditions (1.5) ; z and 7 are taken as independent 
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variables, and y is taken as the unknown function. Omitting simple transformations we 

obtain 

1 + Yxx2 
y2 ] - q2 (rl) g (+y + VPO) h) Y = Ji (71), [YIR = 0 

n 
(k=i,...,n--1) (1.91 

--fi =O(k=i,...,n) 1, 

In order to eliminate the function fi (q), from equations (1.9) we write 

y=q +jw(z,+Lz=‘l +Sw 

0 

(1.10) 

Then the boundary condition y (0, q) = q will be satisfied automatically and to 

determine the function w (x, r$ it will be necessary to solve the boundary value problem 

Mw - &[q2 (7) $1 + q2 (rl) g = VO' (7) w + div (q”@w), [WI/t = 0 
(k=i,...,n--1) 

(1.11) 

w (2, 0) = 0, 
L 

q2 (4 e - VP0 (11) w - 42@2$ = 0 
(k = 1, . . . , n) 

where @tu is the following nonlinear operator 

@w = (CDlW, cP)zw), wn 
*lw = (I+ Swn)Z + 

%%I 
i+ SW, 

wwx 3sw, + 3 (SWJ + (Sw$ - UP 
(1.12) 

@SW = (I+ Sw,)a + (1 + Sm,P 
Wn 

In this fashion problem A is reduced to the solution of a nonlinear boundary value 

problem (1.11). We will look for periodic (with fixed period 2L) odd solutions of this 

problem. There is always the trivial solution w (x. q) = 0 which corresponds to one- 

dimensional flow. The question arises about the existence of two-dimensional flows which 

are close to one-dimensional flow. Mathematically this is the problem of the branching of 

solutions of a nonlinear equation. 

We also note that for one-dimensional flow, the conditions of theorem 1.1 are satisfied. 

Consequently they will also be satisfied for two-dimensional flow which is close to one- 

dimensional. From the solution of problem A, results for potential flow do not follow be- 

cause for potential flow it is not permissible to presoribe the distribution of velocity arbit- 

rarily. 
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In formulation R we will consider the average depth of layers and the distribution of 

the density and of the average vorticity of vector a along streamlines as given 

Hk = + f Yk (x) dx, Y, 3 0 (k=l,...,n) 

0 

t 

P (~7 Y) = R (9), G (I#,) = -+\ All,dx 
0 

(1.13) 

We also consider the discharge of liquid through the cross section of layers PI, . , . , P,. as 
given. The units of measurement are selected in such a way that the average depth of the chan- 

nel, the flow of liquid through the cross section, and the average density p are equal to 

unity. A substitution of variables is made in equation (1.4) and boundary conditions (1.5) ; 

x and +!I are taken as independent variables and y is taken as the unknown function. If 

advantage is taken of conditions (1.13) , th en we obtain that the function y (r, $1 must be 

a solution of the boundary value problem 

~~(~)-~(~)+vR’($)[y--~~ y(:v#)dx]=--o(q) 
-L 

L 

y (5, 0) = 0, + \ Y (2, Pk) dx = Hkr lylk -0 (k=i,...,n--1) (1.14) 

0 

___-- 1 +Ysz YGLa 2L 1 
L 1 - 2 1 ( s 1+y* --$- dx) + VR (9) (Y - Hh.)-jk = 0 (k = 1,. . . , n) 

- I. 

We require that the function R C$) satisfy the conditions 

R (9) > Ro > 0, R’ (9) < 0, [RI/c > 0 (1.15) 

As before these conditions indicate that the density increases with depth. The bounds 

of the function o ($1 are derived from the condition that the boundary value problem (1.14) 

must allow solutions which are independent of x (one-dimensional flow). The boundary 

value problem corresponding to one-dimensional flow has the form 

= - 5 (I,.), [v]k = 0, 1) (P,,) = Hk, 11 (0) = 0 (k = 1.. . . ,n) 

Integrating the second equation we obtain 

The arbitrary constant ck can be determined from the condition 7 (Pi;) = IIlL in 

the case when 
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It is convenient to make a change of variablea in equations (1.14). taking I) (I@ as 

the new independent variable and 

as the unknown function. Introducing further the notation 

L 

it is possible to reduce the boundary value problem (1.14) to a solution of the following 

connected boundary value problems for wc and w : g 

& [q’ (r) ‘$I= $ [q2 (q) (02w),], w, (0) = w, (H,) = . . . = w, (H,,) =.O (1.X) 

Mw, = VP’ (r)w, + div [s2 (q) PW,l, w(;zl+ wg9 bglk =o 
9 . . . I n -1) 

c VPW, - q2 h) (@2W)glk = 0 

(1.17) 

(k = 1, . . . , n) 

where the operator M is determined from formula (1.11) and 

1 
Q2w = T 

3wn= + 2w,9 + zu,” 

(1 +uQa ’ 
Qlw = wxwq 

lf’ Q = (QI, Q2) 

In this fashion, problem B is reduced to the boundary value problem (1.16) and (1.17). 

We will try to find even periodic solutions of this problem with period 215 which are dif- 

ferent from the trivial solution. 

Problem B has a fairly general character. If for example cr ($1 I 0 and p ($1 is a piece- 

wise constant function, then problem I3 describes the potential flows of a multilayer fluid. 

A particular case of the latter problem (n = 2) was examined by N.E. Kochin. Since methods 

for the examination of problems A and B are not substantially different. the analysis will 

be carried out for problem A, and the corresponding results for problem B will be formul- 

ated without detailed investigation. 

2. Linear theory. Neglecting nonlinear terms in (1.11) we arrive at the following 

mathematical eigenvalue problem : 

Mw = vp'w, w (2, 0) = w (0, q) = w (L, q) = 0 

[wlk = 0, [c12wl - vpw]k = 0 

If this problem is solved by separating the variables, then the eigenvalues and eigenfunctions 
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will have the form 

Here v,,,(h) and um (7, h) are eigenvalues and eigenfunctions of the following boundary 

value problem for the ordinary equation : 

(2.2) 

h2qQ = vp’u, u (0, h) = 0, [Ulk = 0, 1 9 2du & - VPU 1 =O k 

which in turn is reduced to the problem of the minimum of the functional 

The variational problem can be analyzed by straightforward methods [3]. As a result 

we arrive at the following theorem. 

Theorem 2.1. If the functions p (~1 and q (T$ satisfy conditions (1.7). then all eigen- 

values of the boundary value problem (2.2) are simple and real. If the measure of the set, 

on which p’ (11) + 0, is different from zero, then the eigenvalues form a denumerable 

set which does not have points of increased density at a finite distance. If however 

P’ (rl) = 0 almost everywhere, then there will be a finite number of eigenvalues. 

It is clear from expressions (2.11 that in investigating the properties of eigenvalues 

and eigenfunctions it is sufficient to limit oneself to the case k = 1, since all other eigen- 

functions and eigenvalues are obtained by dividing the half-period into an integral number 

of parts. The question of spectrum multiplicity is very important. Few cases are known 

where this problem can be solved completely. In the case under examination it is only 

possible to assert that the first eigenvalue is simply due to the fact that min X,(u) is an 

increasing function of the parameter X 

In order to reduce the problem of the existence of periodic solutions of the boundary 

value problem (1.11) to functional equations, it is necessary to know the properties of the 

solution of the inhomogeneous linear equation 

Mw - vp’w = div (q2f), f = VI, fz), [WI/c = 0 (k=l, . . ..n-1) (23) 

U (X,0) = W (0, Tl) = w (L, Tl) = 0, [q”w,, - vpw - y”f2],; = u (k m= 1. . . .( n) 

Here fi and h are some piecewise smooth functions which have discontinuities of the 

first kind at points h,, h,, . . ., /L~_~, while fi (x, rl) is an even periodic function and 

h (x, 7) is odd, 

In the following it will be co tvenient to make use of the terminology of functional 

analysis. Let Dk be a rectangle (U .C < L, A+1 < q < h), and D be a rectangle 
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(0 < J: < L, 0 < q < l)and let H,k be the Hoelder space of functions which in the 

rectangle Dk have derivatives of order m satisfying Hoelder’s condition with the index 

cz (0 < a < 1). Let C be the space of functions continuous in the rectangle D. We de- 

note by H, the Banach space of continuous functions defined in the rectangle D and such 

that w E Hmk for (z, 11) E Dk. The norm ii defined in the following way: 

II ZJ IIH, = II w lIc + II w I&,’ + - - * + II w IIfI,n 
Let Em be the space of the pair of functions f = (fl, fa), where ft E H,, and 

fz E Hm and fr (z, 11) is an even periodic function (with period 2L) and jr (z, T$ is un- 

even. 

Theorem 2.2. If v = Vi is an li-fold eigenvalue of the homogeneous problem, and 

Zil (G 111, - - - zili (2, q)are eigenfunctions corresponding to this eigenvalne, and 

(Pt 4) E EA, f E B,, then the inhomogeneous boundary value problem (2.3) can be 

solved if and only if the following conditions are satisfied 

(2.4) 

The solution can then be written in the form 

4 

w = Af + k&~m (z, rl) 

Here A is a linear operator acting from space B, into space Hz, Ck are arbitrary num- 

bers, and 

11 Af llHI < const (11 f~ &,, + 11 fa Ile,] 

Proof of theorem 2.2. is not very simple, so we will break it up into a series of 

lemmas. 

Let us examine the Hilbert space of functions which can be integrated with a square 

in .?I and such that the funct;on w (x, hk) can be integrated with a square with respect to 

z for 0 < z <L, if [P]k f 0. W e note that it is automatically known that [p], f 0. The 

scalar product in H 
P 

is determined in the following way 

1 L - WI (x, 4 w, (2, h/J dx - ’ P’ (11) ~1 (d, “I) ~a (xc q) dx dv 
k=l 

ss 
II 0 0 

All functions which differ only on the set Ep$‘= 0) will be considered identical. Let 

US examine the subset H,, of functions from B, which become zero in the boundary layer 

~,(Odx<E,O<tlB1; 0,(9dE,O<x<L; L-&<x<L,O<q~l). 

On the set Ho we introduce the following scalar product 
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The Hilbert space H, will be incomplete. If it is completed then some subspace H of 

Sobolev’s space IV,(‘) is obtained for functions which have the first generalized derivatives 

summable with a square [3]. Probl em (2.3) is easily reduced to a problem on the minimum 

of the functional 

The homogeneous linear problem corresponds to the problem on the minimum of the 

functional X (x) z il W II& i jlwi&,. F,’ igenvalues and eigenfunctions of the homogeneous 

problem were already defined by equations (2.1). If the eigenvalues are arranged in the 

order of increasing (vt < me < . . . < v, < . . .), then, as is well known from the class- 

ical theory of the minimum of the quadratic functional [3], 

v1 = min X (w), wEH 

‘ktl = min X (w), w E H, tw7 ‘ij)H, = O (i = 1, . . ., k; j = 1, . . ., 1.) z 

It is also noted that functions orthogonal to corresponding functions in H 
P’ 

will also 

be orthogonal to them in H. This follows from the equation in variations for the functional 

x (w) 

(~ij, ~\p)H - vi (zij, ~)Hp = 0, 1c, E H (i = 1, . ’ .) ‘i) 
(2.6) 

Lemma 2.1. The conditions (2.4) are necessary in order to solve the inhomogeneous 

problem. 

Proof. Let the minimum of the functional (2.5) be reached on the function w,, E H; 

then writing the equation in variations for the functional F (w) we obtain 

(me* V)H - ‘f (WeV ‘P)H - 
P ss 

@f.Vrpdxdtl = 0, t%JEH (2.7) 
D 

Substituting into equation (2.7) the eigenfunction zij (j = 1, . . ., li) instead of the 

arbitrary function (6, and substituting into equation (2.6) the quantity wu instead of the 

arbitrary function $, we obtain conditions (2.4). 

Lemma 2.2. The function on which the minimum of the functional F (w) is reached can 

be represented in the form 

wo (x, rl) = - zt :I :;(2*;) \\ 
li 

Here $i = Aif is the function which 

li 

qaf * vzkj dx dq + 2 CfjZij (2, 11) +Ai f (2.8) 

j=l 

produces a minimum of the functional F (w) on 

the orthogonal addition HDo _ i to the invariant subspace Hi corresponding to the eigenvalues 

Vlr * . *Y ‘j_* where cij (j = 1,. . ., li) are arbitrary numbers. 

Proof. Any function w E H can be represented in the form of a sum w = wl + we, 

where wi E Hi, and w4 E H-i. Rut by virtue of orthogonality F (w) = F (wJ + 

+ F (ws). Since the functions wt and tuI are independent, it is sufficient to find minima 
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F(w,) and F(w,) for finding the minimum F(W). The minimum of a quadratic functional on 

a finite subspace is found in the elementary way. It is achieved on the function which is 

obtained from equation (2.8) if 4 f I 0 is introduced in this equation. For the existence 

of a solution to the second problem it is sufficient for the quadratic functional entering in- 

to the structure of Fur to be positively defined [3] on the subspace H,_i. 

But this is so because 

Lemma 2.2. has been proved. Using the same considerations as in [3] it is not dif- 

ficult to obtain the following evaluations 

II Ai f I/H G Cl II f 11~9 II Ai f 11~~ G CS II f III,* II f IIL, = { s” (I2 I f I2 dr drl (2.9) 

0 0 

It remains to be shown that the function too (z, ‘11 on which the minimum of the func- 

tional is achieved belongs to Ha, if ft E B,, and fr E B,. An integral representation will 

be derived from which this will follow. 

We construct the following function 

u = Uk (q, a) 
v = uk h a) 

th,_, d ‘1 < hk)r 

where the functions uk(~, A) and ~(7, Xl are determined by the recurrent formulae 

vn (117 J.)=c-hh (11 - I), ak = 4’ (hk + 0) 
qa (hk - 0) ’ 

a,= 1,a, = 0 

uk+lb,l h, = uk @kv h) cod&l - hk) + a&-‘uk’ bkr +inhh (9 - h/c) tk = i 
, . . . . n - 1) 

R (ri, Al = “k+l (Ak, &sn&l - Ah) + (a&-‘uk+l’ (hkr &inn&r) - hk) 
(2.111 

Lemma 2.3. As x + + - for functions ~~(7, x) and “A(?, Al. the following asymptotic 

equations are applicable 

uk (r), A) = (2”~‘A)-’ (1 + al) . . . (I f q_,) [(I + ak_+inhh? + 

+ (1 - ak_l)aM)L(2hk_, - ?j)] + 0 (e(‘-“) ‘“) 

vk h, a_) = (I + OLk+l) * ’ ’ (I + O1n-l) [(I + uk)EO,hh(l _ 1) - 

2n-ka 
k . . . an-1 

- (1 - ak)cosnh(l + ?l - 2hk)] + 0 (e(‘+) ‘9 (2.12) 
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where E is some positive number independent of A. 

The proof is made by induction. For u1 (q, h) equation (2.12) is apparently applicable. 

Let it be applicable for sk (71, h). Utilizing equation (2.11) it is not difficult to show that 

it is also applicable to ak + , (T], A). 

Lemma 2.4. If h,_, < r) r< h,, and h,., ‘:.L t < hk, then the function g (q, t, h) can 

be represented in the form 

In addition to this 

where for the functions gi (r,~, t, A) and for their derivatives the following asymptotic 

equations are applicable as x + + m 

Proof of this lemma is easy to obtain if the expression (2.12) is substituted into 

eqcation (2.10) for the function g (7, t, A). 

Lemma 2.5. The function G (x, 5, 7, t) is symmetric with respect to the variables 

x, 17 and 5, t, it i s harmonic with respect to z and 7 when (.c, 111 + ok, .c + E, rf + t 

and it satisfies the following conditions 

(G),l,zO = (G), -I> = (G), ,, = [Cl,; = 0 (k = 1, . . ., 1~ - 11,. [‘?c,]k = o (2.14) 

(k == 1, . . ., IL) 

If (t, t) E Dk, then in the neighborhood of this point the function G (x, [, 7, t) can 

be represented in the following form 

G (I, E, q, t) = f a, . . . ak_l 
1 - uk-l 

loe[(.c - E)Z + (11 - VI + 1+ log [b - 3” + 

+ (2$_, - ‘1 - VI - 1 + ak I-- kd(~ - E)‘+ (2hk-- q - t)‘],/ $- G1 (z, ;, ‘1, t), (x, q)ED, 

G = al. . . al, 

fl (1 + ak) 
h3[b - 8” + (q - VI + G, (2, E, q, G, tT7 ‘1) E u,+,j (2.15) 

G = G,(JG ET 11, t), (2, tl) E Di (i # k, k - 1, k + 1) 

Hera Gt (z, g, 11, t) are bounded harmonic functions. 
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Proof. Let (5, t) E Dk. For 7 # t, as follows from expression (2.13), the scriea (2.10) 

can be differentiated term by term and consequently the series will represent a harmonic 

function. For r) = t, and x f 6 the series (2.10) converges. Therefore the function 

G (2, E, R, t) will satisfy Laplace’s equation at all points of the rectangle Dk with the 

exception of the point I = 5, q = t. It is not difficult to verify that this function also 

satisfies the boundary conditions (2.14). In order to isolate dngularities of the function 

G (2, %, R, t), it is necessary to substitute expressions (2.13) into the series (2.10). Isolat- 

ing singularities for sums of corresponding series we obtain equation (2.15). Lemma 2.5 

has been proved. 

Lemma 2.6. For a function wu (x, $, which produces a minimum of the functional (2.5), 

the following integral representation is applicable 

wo (5, t) = - -!- a,. * * q-1 
q2 (4 

D (2.16) 
-vyiGaw,- 2q2 (tj) f.vG 

arl 
(E, 4 E D, (k = 1, . . ., n) 

Proof. Using standard reasoning it is not difficult to show that the integral represent- 

ation (2.16) is applicable to solutions of the boundary value problem (2.3). The function 

w0 (x, 7) can be approximated in W1(l) to any degree of accuracy by a sequence of twice 

continuously differentiable functions wu(x, ‘I) (for example by the Ritz method). The func- 

tions w,(x, q) will be solutions of the sequence of boundary value problems (2.3) where 

instead of f in the right-hand parts we have f,, where f, + f in W, (I). We write for the 

function wn(z, 7) the integral representation (2.16) and pass to the limit as n + m. We 

obtain that the integral representation (2.16) is applicable for generalized solutions. The 

lemma has been proved. 

Now it is not difficult to complete the proof of theorem 2.2. From the integral repre- 

sentation (2.16) and from the properties of the potentials it follows that the function 

wo (x, r,$ has second generalized derivatives in Dk and consequently satisfies Hoelder 

condition. Corresponding evaluations for the norm w0 (x, 7) are obtained by the usual 

method [3] using the evaluations (2.9). 

3. Nonlinear theory of small amplitude waves. Let u. be an m-fold eigenvalue of a 

linear problem and z1 (2, tj),. . ., Z, (5, q) the eigenfunctions corresponding to this 

eigenvalue. Taking into account that 

and that the function 
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is continuous, and assuming that v = Y,, - lt, we rewrite equations (1.11) in the form 

Mw - v,+‘(q) w = div (qTw) 

w (G 0) =u(O,Tj)=w(L,tj)= [&=O (k=L...,n--) 
(3.1) 

[q%,’ - vopw - q*F,wlk = 0 (v=vo-pII, k=l, . . . . n) 

FP = a#’ - wq-“w + Wa ( pw,,‘dq, Fw = (O,w, F+u) (3.2) 
1 

where the nonlinear operators @,w and @a w are defined by equations (1.12). As follows 

from theorem 2.2, In order for a solution of the nonlinear boundary value problem to exist 

it is necessary that the following conditions be satisfied 

PiFw s qs (q) Fw . Vqdxdq = 0 (3.31 

D 

We will examine simultsneously the systems of equations (3.1) and (3.31. Applying 

theorem 2.2 we obtain 

w=A L (3.4) 

The boundary valoe problem (3.11 is equivalent to the solution of the system of 

equations (3.31 and (3.41. However, equation (3.4) may be solved independently of 

equations (3.3). 

Theorem 3.1. Such numbers b > 0 and aa > 0 exist that for 1~1 <b and Iail < a, in 

space H, a sphere can be found of such a radius 6 and with center at 0 that in this sphere 

a solution of equation (3.4) can be obtained by the method of successive approximations 

and this solution will be an analytical function of the parametersp, cl, . . ., c,. 

The proof is omitted because it can be carried out by standard considerations. The 

analytical behavior, for example, is proved by constructing majorant series [41. 

If the solution obtained is now substituted into equation (3.31, we obtain a system of 

equations with Liapunov-Schmidt branching 

Ri t/h Cl7 $,a - - t Cm) = 0 (i = 1, . . ., m) (3.5) 

Here Ri are some analytical functions of their own arguments. While complete analysis 

of the branching equations in the case of a multiple eigenvalue is possible in principle, 

it leads to extremely cumbersome calculations [ 51. We limit outselves to the case of a 

simple eigenvalue. The solution (3.4) has the form 
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WOl (xv rl) = 2 (xv tl) (3.6) 

Here p is an arbitrary parameter and I (x, 7) ia the eigenfunction. Substituting ex- 

pression (3.6) into the branching equation (3.31, we obtain 

Let 

‘p (0 = 

k=l 

Wok 

R tp, B) = 0 

q+pJ7zdxd~ = ; anfk 
k+ 

(3.7) 

(3.8) 

Theorem 3.2. If ap is the first coefficient different from zero of the aaries (3.8) and 

p in even, then the branching equation has for /3 a single nontrivial solution which can be 

found in the form of a series in powers of the parameter l~llfn+)., If, however, p ia odd, 

then the branchfng equation has two nontrivial solutions, which for af, > 0 are in the form 

of 8eriee in powers of IL1 /(P-l), 

(- lt)‘/ (p-r). 

and for aP < 0 in the form of eeriea in powera of 

Proof.Rememberingexpreeaionr, (3.2) and utilizing equations (3.8) we can write branch- 

ing equations in the form 

Here RI and R, are some analytical functions and 

It is known that all solutions of the equation of the form (3.91, which become zero for 

p = 0, can be found in the form of series [6] in terms 

cc 

of frttctional powera of the parameter 

(3.10) 

Here r ia some integer. Substituting the expansion (3.101 into equation (3.9) we obtUn 

that the terma of lowest power are 

For their mutual annihilation the following conditions must be fulfilled 

r=p--l, applp - bpl = 0 

Only real solutions of the second equation are of intereat. The branching equation haa 
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just as many solutions ae this equation. Three cases are possible : 

(a) p is even, there is one nontrivial solution 

(b) p is odd, of, > 0, there are two solutions for p > 0 

p1 = 5 (b /a,)’ (p-1) 

and there are no solutions for p < 0 ; 

(c) p is odd, a <O. This case is reduced to the previous case, if one writes 
P 

p ‘= - p end looks for solutions in the form of a series in fractional powers of 

parameter ~1’. Theorem 3.2 has been proven. 

We note that generally speaking p = 2 and op f 0. We will call the case p = 2 the 

general case, end cases p > 2 exceptional cases. 

Substituting series (3.10) for /3 into expression (3.6). we obtain solutions of the non- 

linear boundary value problem (3.1) in the form of some series in fractional powers of the 

parameter 6(. Remembering equation (1.10) for the family of streamlines and utilizing 

expression (2.1) for eigenfunctions with k = 1, we obtain 

1 1 

A.=&_ tip-’ ( 1 Ai=&(& p-1 
1 

J-t UP 
(P' = &l)? (P=a+1) 

It is known that for a rectilinear bed the velocity of wave propagation is an uncertain 

quantity. In section 1 the quantity P / Hv/i;- was referred to rts the velocity of propa- 

gation. Since v = gH / ca, then 

Ci a = *[I + $ (F)‘-l&] + o CAiP-‘) (3.11) 

It follows from expression (3.11) that for sgn(~,A~~-‘) > 0 the velocity of propaga- 

tion exceeds the critical velocity and grows with increasing amplitude, and for 

sgn @&+‘) < 0 it is emeller than the critical velocity and decreases with increas- 

ing amplitude. 

The principal result can now be formulated in the following way: an even set (for 

p’(q) - 0 it is finite) of critical values exists for the wave propagation velocity. If the 

propagation velocity is close to one of the critical velocities, then, in addition to one- 

dimensional flow with given der sity and velocity distribution over the cross section, there 

always exists, for a f 0 and p eve 
P 

one family of two-dimensional flows, which for a 
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fixed value of wavelength depends on one nondimensional parameter (amplitode) and which 

has the same distribution of the density and of the horizontal component of velocity vector 

over the cross section, which appears as an axis of symmetry, as the one-dimensional flow. 

For uneven p two families of two-dimensional flows exist propagating with the same velo- 

city. The dependence of this velocity on the amplitude is expressed by equation (3.11). 

In the case of problem R everything is also reduced to the analysis of branching 

equations which have the same form as equation (3.7). But here p = 3 in the general case. 

We present the corresponding equations for the family of streamlines and for the velocities 

of propagation 

ci2 = vi (n / L) [ 
1 + a3Aia bv 

i 
(:, Lj] + 0 (4 

Here Ai is the amplitude, and a, is some known coefficient. The propagation velocity 

is greater than critical and grows with increase in amplitude for or > 0 and is smaller than 

critical for 0, < 0. 

The principal result of problem B can be expressed in the following form : if the velo- 

city of propagation is close to one of the critical velocities, then, in addition to trivial 

one-dimensional flow with a given distribution of density and average vorticity along 

streamlines, in the general case two families of two-dimensional flows always exist which 

for a fixed wavelength depend on one parameter (amplitude) and which have the same dis- 

tribution of density and average vorticity along streamlines as in the case of onedimens- 

ional flow. In exceptional cases there may not be two, but one family of two-dimensional 

flows. 

1. 

2. 

3. 

4. 
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